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We investigate the optical bistability (OB) in a duplicated two-level system contained in a ring cavity. The
atoms are driven by two orthogonally polarized fields with a relative phase. The OB behavior of such a
system can be controlled by the amplitude and the relative phase of the coupling field, and it is possible
to switch between bistability and multistability by adjusting the relative phase.
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It is well known that quantum coherence and interfer-
ence can give rise to some interesting phenomena, such as
electromagnetically induced transparency (EIT)[1], slow
light[2], giant Kerr nonlinearity[3,4], four wave mixing[5],
and so on. In the past few decades, optical bistability
(OB) has been extensively studied both experimentally
and theoretically[6−8]. The role of atomic coherence
in OB has been investigated, and it is found that the
bistable hysteresis cycle becomes smaller as the Rabi
frequency of the control field increases[9]. Different
mechanisms to realize OB utilizing atomic coherence
have been reported, for example, via the initial co-
herence of atoms[10], via spontaneous emission induced
coherence[11−13], via the phase and amplitude of the
driven field[14], via a squeezed vacuum input[15,16], or via
multi-Raman-channel interference[17], etc. Double-cavity
optical bistability of a three-level ladder system[18] has
been reported lately. Experimentally, Joshi et al. have
demonstrated that the enhanced nonlinearity induced by
atomic coherence effects in Λ-type atomic systems can
produce the optical bistability and multistability, more-
over, the shape and direction of the hysteresis loop can be
controlled by the parameters of the coupling field[19,20].
Recently, optical bistability in many other quantum sys-
tems has been investigated as well, such as in photonic
crystal (PC) nanocavities[21], in PT -symmetric periodic
structures[22], in photonic-crystal one-atom laser[23], in a
hybrid metal-semiconductor nanodimer[24], in a doubly
resonant χ(2)-nonlinear plasmonic nanocavity[25], etc.

Optical bistability has been wildly investigated due to
its significant applications in photon control devices[6].
Xiao and coworkers have realized optical switching be-
tween two steady states of optical bistability generated
in a system with three-level atoms inside an optical
cavity[26]. Later, Chang et al. reported all-optical flip-
flop and storage of optical pulse signals with a low peak
power of several tens of microwatts[27]. Optical switch
between different delays by exploiting the optical bista-
bility of molecular aggregates arranged in nanofilms is
investiged[28]. Very recently, it was reported that the
enhancement of “logical” responses by noise in a bistable
optical system[29]. What is more, in a bistable cavity
polariton system[30], pulsed acoustic excitation can lead
to ultrafast switching of the optic response.

A duplicated atomic system has attracted considerable
attention recently due to its unique quantum properties.
Bouchene and coworkers[31−33] investigated the coherent
control of the medium gain for the probe pulse and the
effective susceptibility, as well as slow light caused by
coherent Zeeman oscillations. A scheme was proposed
to double the precision of a two-beam interferometer,
where the direct detection of the beat signal is replaced
with the monitoring of the fluorescence of a twofold de-
generate atomic system resonant with the laser[34]. The
propagation effect of elliptical polarized short pulses in
such kind of atomic medium was investigated too[35].
Recently, some of us proposed a scheme to control the
spatial interference of resonance fluorescence from two
duplicated two-level atoms via the relative phase of two
orthogonally polarized fields[36].

In this letter, we propose a method of amplitude and
phase control of optical bistability in a duplicated two-
level system. We find that it is possible to switch between
bistability and multistability by adjusting the relative
phase between the probe field and coupling field. The
relative phase, when increased in some range, may in-
crease the width of bistable hysteresis loop; when the
coupling field amplitude is increased, the OB threshold
could be reduced, however the width of the hysteresis
cycle would decrease. OB can be optimized by properly
choosing the relative phase and the amplitude.

The atoms used here are modeled as duplicated two-
level atoms (see Fig. 1(a)). The system could be realized
in 6Li atom. The F = 1/2 ↔ F = 1/2 transitions
(energy ~ω0) are excited by two orthogonally polarized
fields of the same frequency ω. The two lower (up-
per) states {|1〉, |2〉} ({|3〉, |4〉}) with energies E1 = E2

(E3 = E4) correspond to the degenerate states of the
level 2S1/2F = 1/2 (2P1/2F = 1/2) with mF = ±1/2.
A π−polarized field is applied to couple the transitions
with identical mF (i.e., |1〉 ↔ |3〉 and |2〉 ↔ |4〉), and
a σ−polarized field is applied to couple the transitions
with different mF (i.e., |2〉 ↔ |3〉 and |1〉 ↔ |4〉). We
assume that both excited states have the same decay rate
γ to the each lower level. In this situation, a closed-loop
system is formed, and we define φ is the relative phase be-
tween these two driving fields. To investigate the optical
bistability, we put the ensemble of duplicated two-level
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Fig. 1. (Color online) (a) Energy level structure for consid-
eration. (b) Unidirectional ring cavity with a atomic sample
of length L. Mirrors 3 and 4 have 100% reflectivity and mir-
rors 1 and 2 have the intensity reflection and transmission
coefficient R and T (R + T = 1), respectively. EI

π
and ET

π

are the incident and the transmitted π−polarized fields, re-
spectively. The coupling field Eσ dose not circulate in the
cavity.

atoms in a unidirectional ring cavity (shown in Fig.
1(b)). Mirrors 3 and 4 have 100% reflectivity and mir-
rors 1 and 2 have the intensity reflection and transmission
coefficient R and T (R + T = 1), respectively. We con-
sider that only the π−polarized field is the probe field
and circulates in the cavity, and the coupling field Eσ is
the coupling field and dose not circulate in the cavity.

In the interaction picture, the Hamiltonian of the sys-
tem in an appropriate rotating frame can be written as

H = ~









0 0 Ωπ −Ωσe−iφ

0 0 −Ω∗

σe−iφ −Ωπ

Ωπ −Ωσeiφ ∆ 0
−Ω∗

σeiφ −Ωπ 0 ∆









,

(1)

where ∆ = ω0−ω is the detuning, and the Rabi frequen-
cies are defined as Ωπ = µEπ/2~ and Ωσ = µEσ/2~ (µ
is the dipole moment). The dynamics of the system can
be described using density-matrix approach as

ρ̇ = − i

~
[H, ρ] + L[ρ (t)]. (2)

The Liouvillian matrix L[ρ(t)], which describes relax-
ation by spontaneous decay, is given by

L[ρ (t)] =







γ (ρ33 + ρ44) 0 −γρ13 −γρ14

0 γ (ρ33 + ρ44) −γρ23 −γρ24

−γρ31 −γρ32 −2γρ33 −2γρ34

−γρ41 −γρ42 −2γρ43 −2γρ44






.

(3)

We define the coherences ρπ = ρ42 − ρ31, ρσ = ρ32 + ρ41

responsible for the π- and σ-polarized radiated fields, re-
spectively. We solve the density-matrix Eq. (2) in the
steady state and we have

ρπ =
(iγ + ∆)Ωπ(Ω2

π + Ω2
σe2iφ)

2|Ω2
π + Ω2

σe2iφ|2 + (∆2 + γ2)(Ω2
π + Ω2

σ)
, (4a)

ρσ =
(iγ + ∆)Ωσe−iφ(Ω2

π + Ω2
σe2iφ)

2|Ω2
π + Ω2

σe2iφ|2 + (∆2 + γ2)(Ω2
π + Ω2

σ)
. (4b)

The Maxwell’s equation under slowly varying envelope
approximation is

∂Eπ

∂t
+ c

∂Eπ

∂z
= i

ωπ

2ε0
P (ωπ), (5)

where P (ωπ) is the slowly oscillating term of the induced
polarization in π−transition and is given by P (ωπ) =
Nµρπ. For a perfectly tuned cavity, the boundary con-
ditions in the steady-state are[6]

Eπ(L) = ET
π /

√
T , (6a)

Eπ(0) =
√

TEI
π + REπ(L), (6b)

where EI
π and ET

π are the incident and the transmit-
ted π−polarized field, respectively. L is the length of
the atomic sample. The second term on the right-hand
side of Eq. (6b) describes a feedback mechanism due to
the mirror, which is essential to give rise to bistability,
namely, there will be no bistability if R = 0.

For the steady-state, in the mean-field limit[6], time
derivative in Eq. (5) is equal to zero. Using the bound-
ary conditions Eq. (6), we obtain the input-output rela-
tionship:

y = x − iCγρπ, (7)

where y = µEI
π/~

√
T and x = µET

π /~
√

T are the
normalized incident and output fields, respectively;
C = LNωµ2/2~cε0Tγ is the usual cooperation param-
eter. The nonlinear term on the right-hand side of Eq.
(7) is indispensable to the occurrence of OB. The steady-
state values of ρπ is obtained and shown as Eq. (4a).

In the numerical calculations, all parameters are di-
mensionless and normalized by γ. First We assume that
both applied fields are resonant with the corresponding
atomic transitions, i.e., ∆ = 0. We set the relative phase
φ = 0, to investigate the effect of the amplitude of the
coupling field (Ωσ) on OB. From Fig. 2(a), one may find
that in the resonant situation, when Ωσ increases, the
width of the hysteresis cycle decreases, i.e., it is more
difficult to observe OB. In a closed-loop system, the
relative phase φ affects the atomic dynamics (see Eqs.
(1) and (4)), so it allows us to control optical proper-
ties of the medium by the relative phase. We choose
the Rabi frequency of the coupling field is Ωσ = 5 to
investigate the influence of the relative phase on OB.
It is shown in Fig. 2(b) that, when φ = 0 (black/solid
curve), the transmitted light is a single value function of
the input light, and there is no OB. When φ is increased,
optical bistability appears. Our numerical calculations
show that the critical value of the relative phase where
OB appears is φ = 0.27π. The hysteresis cycle may be
broadened considerably while φ is increased. When φ is
further increased, multistability appears. The numeri-
cal calculations show that multistability exists when the
relative phase φ ∈ (0.4785π, 0.5215π). In Fig. 2(b). we
chose φ = π/2 and show optical multistability behavior
(pulper/dash-dot-dot curve).

In order to get the physical origin of such effects, we
now investigate the polarization of the π−polarized field.
In Fig. 3, we plot the π−polarized absorption and dis-
persion. In the resonant situation, when φ = 0, from
Fig. 3(a) it is found that Im(ρπ) > 0, i.e., the medium is
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Fig. 2. (Color online) Transmitted light versus incident light
in the resonant situation. (a) Relative phase φ = 0; (b)
Ωσ = 5. The other parameters are ∆ = 0, and C = 200.

Fig. 3. (Color online) Absorption and dispersion of
π−polarized field (a) when φ = 0 and (b) when Ωσ = 5.
Ωπ = 1 and the other parameters are the same as Fig. 2.

an absorber. The increasement of Ωσ leads to a weaker
absorption and dispersion. This may cause the disap-
pearance of OB in Fig. 2(a). The effect of the rela-
tive phase on the polarization is shown in Fig. 3(b).
When φ = π/4, an anomalous “dispersion like” absorp-
tion profile appears. When φ = π/2, it is shown that
Im(ρπ) < 0, i.e., the medium changes into an amplifier.
Thus, the OB behavior will change when the relative
phase increases. When φ is increased from π/2 to π, the
polarization will make inverse changes to that φ rises
from 0 to π/2, as a result, the hysteresis cycles behave
adversely. Therefore, one can control the OB behavior
via the relative phase.

Next, we considerer the off-resonant situation (we
choose ∆ = 10 for an example). We find that when the
Rabi frequency of coupling σ−polarized field is not too
strong, e.g., from Figs. 4(a) and (b), increasing φ from 0
to π/2 leads to wider hysteresis cycles, and increasing φ
from π/2 to π leads to narrower hysteresis cycles; when
φ = π/2, multistability appears. When Ωσ is strongly in-
creased, e.g., when Ωσ = 30 in Fig. 4(c), OB will not hap-
pen, however multistability still appears when φ = π/2.

Fig. 4. (Color online) Transmitted light versus incident light
in the off-resonant situation (∆ = 10). (a) Ωσ = 5, (b)
Ωσ = 10, and (c) Ωσ = 30. The other parameters are the
same as Fig. 2.

Fig. 5. Im(ρπ) (solid curve) and Re(ρπ) (dashed curve) versus
the relative phase φ. The parameters are Ωπ = 1, Ωσ = 10,
and ∆ = 10.

If we compare the hysteresis cycles with the same rel-
ative phase from Figs. 4(a) to (c), we find that in-
creasing the coupling field intensity leads to a lower OB
threshold, however the hysteresis cycles become narrower
and finally disappear. From the π-polarization, we find
that OB changes from dispersive (φ = 0) to absorptive
(φ = π/4) and again to dispersive (φ = π/2), as shown
in Fig. 5.

In conclusion, in a duplicated two-level system con-
tained in a unidirectional ring cavity, we studied the
optical bistability and multistability via amplitude and
phase control. Increasing the relative phase φ from 0
to π/2 could increase the width of bistable hysteresis
loop, and multistability occurs if φ = π/2. By adjusting
the relative phase, one can switch between bistability
and multistability. Increasing the amplitude of the or-
thogonally polarized coupling field may reduce the OB
threshold, however the width of the hysteresis cycle also
decreases. Similar level structure can be found in quan-
tum dots[37]. These results may be helpful for experi-
mental studied of amplitude and phase control of optical
bistability.
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